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Optimum Design of Stepped Transmission-Line

Transformers*
SEYMOUR B. COHN{

Summary—This paper describes the optimum stepped-transmis-
sion-line transformer structure for matching two unequal character-
istic impedances. For any specified bandwidth, the steps are designed
to yield a Tchebycheff-type (or equal-ripple) reflection-coefficient
response. Over this band, the maximum vswr is less than that obtain-
able with any other stepped-transformer having the same number of
steps. Design method and technique for eliminating discontinuity-
capacitance effects are given. The measured results for a coaxial
and a waveguide model are presented and found to verify the method.

INTRODUCTION
J:[N THIS PAPER a method of design will be given

for a transformer structure that is capable of match-
ing transmission lines of different characteristic im-
pedances over a very broad band.! As shown in Fig. 1
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Fig. 1—The stepped transformer.

this structure consists of a succession of abrupt steps in
characteristic impedance spaced by essentially equal
electrical lengths of uniform line. The transmission line
may be of any type, for example, coaxial or waveguide.
With a specified number of steps, this design method
provides the maximum possible bandwidth for a given
vswr, or conversely, the minimum possible vswr for a
given bandwidth. For this reason, the structure has been
termed the optimum-stepped transformer. It may also
be called the Tchebycheff transformer, since the Tche-
bycheff polynomial is used in its design.

Prior to this work, Hansen's binomial-coefficient de-
sign was the accepted method for the stepped trans-
former.? In this design, the logarithms of the impedance

* This work was performed in 1951 at the Sperry Gyroscope Co.,
New York, N. Y., and is described in part in the Third and Fourth
Quarterly Reports on Development of Broadband Waveguide Com-
ponents, April 20, and July 20, 1951, The program was supported by
the Signal Corps under Contract No. DA-36-039-sc-166.

+ Stanford Res. Inst., Stanford, Calif.

1 The writer has learned recently of independent work on opti-
mum-stepped transformers by: F. Bolinder, “Fourier transforms in
the theory of inhomogeneous transmission lines,” Acta Polytech. Elec.
Engrg. Ser. (Stockholm), vol. 3, pp. 3-84, 88; 1951. H. J. Riblet,
“Optimum (Narrow Band) Transformer and Directional Coupler
Performance,” presented at URSI Meeting, Washington, D. C.;
April 28, 1953. S. Hopfer, “Techniques Utilizing Flat and Ridged
Waveguides,” presented at Symposium on Modern Advances in
Microwave Techniques, New York, N. Y.; November 10, 1954. It is
likely that others may also have made this extension of Dolph-
Tchebycheff antenna-array theory to transmission-line transformers.
R. E. Collin “Theorv and Design of wide-band multi-section quarter-
wave transformers” Proc. IRE, vol. 43, pp. 179-185; February, 1955.

2 W. W. Hansen, “Notes on Lectures,” ch. 6: M. I. T. Rad. Lab.,
1941-1944.

ratios of the steps are made to be in the ratio of the bi-
nomial-coefficients; i.e., in the ratioc of numerical coeffi-
cients of (x+4v)*~!, where # is the number of steps.
Subject to Hansen's assumptions of small steps, zero dis-
continuity capacitance, and equal electrical lengths be-
tween steps, theoretical vswr of binomial transformer is

&y

n+1

=144 (cos¢)”'In
1
where ¢ is the electrical phase length between steps, #
is the number of steps, Z,.1 is the characteristic im-
pedance of the higher-impedance terminating line, and
Zy is that of the lower-impedance terminating line.

The improved method of design to be described in
this paper proportions the logarithms of the step ratio
in such a manner that the vswr has the characteristic
“equal-ripple” response of a Tchebycheff polynomial.
Subject to the same approximations assumed for the
binomial-coefficient design, and for a specified number
of steps, it can be shown analytically that the Tche-
bycheff design gives the maximum possible bandwidth
for a given vswr, or the minimum possible vswr for a
given bandwidth. The degree of improvement is evident
in Fig. 2, where the theoretical vswr is plotted as a func-
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Fig. 2—Theoretical vswr response of a five-step transformer for a
total characteristic impedance change of 8:1.

tion of the step spacing for five-step transformers having
the binomial and the optimum responses. In this exam-
ple, the optimum transformer was designed for a two-to-
one band, and has a maximum vswr of 1.021 in this
range. The binomial design has a vswr of 1.13 at the
edges of this range, and its bandwidth for a vswr of
1.021 is only 1.52 to one. The same sort of improvemeént
will occur for any number of steps and for any band-
width however small or large, as long as the optimum
transformer is designed for that particular bandwidth.
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DEsioN RELATIONS

The design method given in this paper is similar to
one developed by Dolph® for antenna arrays. When
applied to the stepped-transformer, the voltage-stand-

ing-wave ratio is
cos ¢
Z Tn—l [ ¢ ]
cos
S=1+1n [ -

Zﬂ Tﬂ_l[ 1 ]’ @

COS ¢

where ¢, is the electrical spacing of the steps at the low-
frequency edge of the band and 7,(x) is the Tchebycheff
polynomial of mth degree defined by

To(x) =1

Ti(x) = x

Ta(x) = 25— 1

Ty(x) = 2% — 3 (3)

RACER NN S

Toir(x) = 25T (%) — Th1(x)

T..(x) may also be computed from the following equiva-
lent expressions

(4a)
(4b)

Tn(x) = cos (m cos™! x), 1
Tn(x) = cosh (m cosh™ z), =1

rlé
|

The maximum vswr in the design band is

=1t 5)

Egs. (2) and (5), which are derived in Appendix I, are
valid subject to the assumption of small steps in im-
pedance, but as will be shown later by an example, they
hold quite well even for surprisingly large steps.

In terms of the electrical lengths ¢, and ¢, =180 de-
grees—d¢; at the band edges, the bandwidth ratio p is
given in coaxial line by

Jo ¢ 180 degrees — ¢

p="= (6)
Ji o1
and in waveguide by
A
_% e )
¢1 >\g2
For a desired value of p, ¢; may be obtained from
180 degrees
e ®)

1+4p

3 C, L. Dolph, “A current distribution for broadside arrays which
optimizes the relationship between beam width and side-lobe level,”
Proc. IRE, vol. 34, pp. 335-348; June, 1946,
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In coaxial line, the step-spacing is a quarter wavelength
at the center frequency of the band, or

>\0 )\1)\2
= e = ————————————— (9)
4 20+ N)
In waveguide
R Noikoz (10)

4 B Zo‘al’l’ >\y2) .

In order to obtain the vswr given by (2), the ratios of
the reflection coefficients of the steps must be equal to
the ratios of a certain set of constants ¢, which may be
computed for the particular number of steps and the de-
sired bandwidth:

(11

In order to simplify the computation and make possi-
ble an explicit formula for the characteristic impedances,
the following approximation proposed by Hansen will
be used

ViiFoi¥ge + v 0 ¥, = Q1:@2iQ3: ¢+ * 1Qg.

1 Z i1 1
¥ = —In s Py < — ¢
2 Zm 3

(12)

This agrees within a few per cent with the exact forinula
for 7 even for Z,1/Z, as large as 2.0. It should not be
assumed, however, that the inaccuracy of (12) is the
sole theoretical factor limiting the design method to
small steps. Other factors are the reflection interactions
between large steps and the diminution of the trans-
mitted wave at large steps. With the use of (12), the
step ratios may be given by

Zn+1

In—:In —:-.-:ln (13)

1 2 n

= @1 Q.Q3% ¢ ¢ 0 Q.

The ratio at a given step may be computed in terms of
the terminating impedances and the a, values by

Zn+1

e In
Zm+1 1

" —dl+dz+03+"'+dn

Zm
Once Z,11/Zn is known at each step, the characteristic
impedance of each section of the transformer may be
obtained.

A simple method for calculating the a,, values neces-
sary in (14) is given in Appendix II. Also, as a furiher
aid to the design engineer, values of a, are tabulated
(Tables I, IT and III, page 18) for bandwidth ratios of
1.40, 2.00, and 2.27, and for various numbers of steps.

The assumption of small steps would appear to limit
the utility of both the Tchebycheff and binomial design
methods in the case of a large impedance change. In
order to determine the effect of a large violation of the
small-step assumption, the hypothetical case of a 5-step
transformer having p =2 and Zs/Z; =8 was investigated.
As shown in Fig. 2, the vswr for this case reaches the
maximum value of 1.021 at five points in the band. Due

(14)
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TABLE I

7 an Values for p=1.40

1 1

2 1,1

3 1, 1.8661, 1

4 1,2.799, 2.799, 1
TABLE 11

n an Values for $=2.00

1 1

2 1,1

3 113, 1

4 1,241,231

5 | 1,3,44, 3,1
TABLE I1I

7 an Values for p=2.27

5 1,2.684, 3.585, 2.684, 1

7 1, 4.026, 8.078, 10.033, 8.078, 4.026, 1

to symmetry, however, only three of these points need
be considered. The various characteristic impedances
of the transformer were determined, and then the input
vswr of the terminated transformer was computed by
exact methods at the three critical values of ¢. The
vswr's thus obtained were 1.025, 1.014, and 1.027. These
values compare very well with the value of 1.021 deter-
mined from (5). Therefore, it appears that the small-
step assumption may be violated drastically without
excessive deterioration in the performance of the trans-
former.

CORRECTION FOR DISCONTINUITY SUSCEPTANCES

It has been assumed thus far that the discontinuity
susceptances in the stepped transformer are zero. This
would be approximately true in a low-frequency coaxial
line, but not in a high-frequency coaxial line or wave-
guide. The presence of the discontinuity susceptances
has two effects. The lesger effect is a small increase in
the magnitudes of the individual step reflections. The
greater effect is the introduction of phase angles in the
reflection and transmission coefficients of the steps. In
the following analysis these effects will be investigated,
and methods of correction for these effects will be given.

Fig. 3 shows the equivalent circuit of a single step in
an otherwise infinite transmission line. The voltage re-
flection and transmission coefficients of the step are:

Yn=Vuua—iBu_ Yu/Vi—1—jBu/Vuis
Ym+ Ym+1+ij Ym/Ym+1+]+]Bm/Ym+1

, 2V o/ ¥y
" Ym/ym+1+ 1 +ij/Ym+1

(15)

¥m

(16)

The magnitudes of 7, and ¢, are
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(Ym/Yerl - 1)2 + (Bm/Ym+1)2
[ 7] = ; )
(Ifm/I m+1 + 1)2 + <Bm/17m+1)2
Y /Y 1)

N 4/ (V/ Vg1 + 1) + (Bu/Vogn)?

i
[

(18)

It is seen that 7. is not greatly affected by B, if
(Bm/ Yni1)*<(Yn/ Vinra—1)2 This would be the case in
a low-frequency coaxial line, and would be approxi-
mately the case in waveguide. If this condition is not
met, the step impedances should be re-computed by suc-
cessive approximations until the 7, values for m=1 to
n are in the required ratio a;:a@s:a3: + + * :a,. The effect
of B, on t, is even less, and is likely to be negligible in
any case. The phase angles of 7,, and ¢, are

< Bm/Ym+1 )
—tan | ————
Voo/Viyr — 1
( Bm/Ym+1 )
—tant({ ———
Vo'V + 1
ML)
Vo/Vmir + 1/

Ly, =
(19)

Lty = — tan—l( (20)

By interchanging Y,, and Y,,; it may be seen that Z#,
is independent of the direction of transmission.

f
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Fig. 3—Equivalent circuit of a single step.

Now consider the individual waves reflected from the
steps arriving at some particular reference point be-
tween the generator and the transformer. It will be
found that the phase angles of the reflection and trans-
mission coefficients cause phase shifts in these returning
waves in addition to those due to the distance traversed.
These extra phase shifts are

b= —4Lr
¢eg= —47’2_ th

1 (21)
¢en - _lfn - 24;1 — 2£t2 e zltn_l.

At the center of the band (¢ =90 degrees) these extra
phase shifts may be eliminated by moving each step
toward the generator by an electrical length equal to
one-half of the extra phase shift. The distance x by which
each step is moved is therefore as follows:

_ ¢el
28

X1
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e the band has a maximum of 1.045. The difference be-
Y2 = 28 (22) tween these values is very small and may be due to test-
equipment errors. For the same number of steps, (1)
shows that a binomial-coefficient design would have a
Den maximum vswr of 1.11 in the band.
¥n = 28 ' The second transformer was constructed in 2X 1-inch

where 3=360 degrees/\, in wave guide and 360 de-
grees/\ in coaxial (or other TEM-mode) line. Although
this correction is made only at the center of the band,
it should give good results over a wide range in ¢. The
physical result of this correction is in most cases to de-
crease the spacings between steps to somewhat less than
N4 (or N, /4).

Ample theoretical data to permit accurate computa-
tion of the above correction exists for the discontinuity
susceptance of steps in coaxial, parallel-plane, and wave-

guide lines.*5
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Fig. 4—The stepped coaxial transformer and its measured vswr.

EXPERIMENTAL TESTS

Data is at present available on two optimum-step
transformers. The first is a four-step coaxial trans-
former with p =2.0, and a design range of 1,000 to 2,000
mc. As shown in Fig. 4, one end of the transformer con-
nects to standard 7/8-inch line having a characteristic
impedance of 46.3 ohms, while the other connects to a
line heving the same O.D., but a characteristic imped-
ance of 112.2 ohms. The lengths were calculated from
(9) and the characteristic impedances from (14) with
the use of the a,, values of Table II for #=4. The dis-
continuity susceptance corrections were computed by
(1¢) to (22) and were found to require a shortening of
each length by about 0.5 per cent, a quantity small
enough to be neglected in this case. The maximum vswr
computed from (5) is 1.034, while the measured vswr in

¢ J. R. Whinnery, H. W. Jamieson, and T. E. Robbins, “Coaxial
line discontinuities,” Proc. IRE, vol. 32, pp. 697-709; November,
1944,

5 N. Marcuvitz, “The Waveguide Handbook,” McGraw-Hill
Book Co., Inc., New York, N. Y.; 1951.

waveguide for use with a waveguide filter. In this appli-
cation, it was necessary to transform from the standard
height of 0.872 inches to a height of 0.550 inches, with
the width dimension held constant. The required fre-
quency range is 4,400 to 5,200 mc, vielding a value of
p=Nn/Ap2=1.35 but to provide some tolerance the
value p=1.40 was used in the design. It was found by
(5) that a theoretical vswr of 1.016 could be held over
the band for =3 and therefore this number of steps
was selected. In designing the impedance levels in the
transformer, use was made of the fact that for a constant
width, the characteristic impedance of a waveguide is
proportional to its height. Upon calculating the dis-
continuity-susceptance effect, it was found that the
change in the magnitude of the reflection coefficients
was negligible, but that a substantial change in one of
the section lengths was required. The final dimensions
are shown in Fig. 5. The measured vswr, also shown in
Fig. 5, has a maximum value of 1.045 in the band. Since
the theoretical vswr is actually less than the nominal
accuracy of the test equipment, part of the additional
reflection may be due to experimental error. In any
case, the performance obtained with this and the coaxial
transformer is considered to be a satisfactory verification
of the design method.
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Fig. 5-—The stepped waveguide transformer and its measured vswr.

CONCLUSION

It has been shown theoretically and experimentally
that the optimum-stepped transformer is superior to the
previously used binomial transformer. Since the former
is no more difficult to design or construct, it is recom-
mended that it be used in all future applications re-
quiring a stepped transformer.

The discontinuity-susceptance correction, which
could also be used in the binomial transformer, makes
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possible the successful design of stepped transformers
in waveguide, where discontinuity effects have been
generally troublesome in the past.

ArrPENDIX 1
DERIVATION OF THE DESIGN FORMULAS

With reference to Fig. 1, the voltage reflection coef-
ficient of the mth step is
VA 41 Z
Ay =2 0 (23)
Zm+1 + Zm
Because of the assumption that the steps are small, we
may neglect reflection interactions, and express the total
reflection coefficient of the stepped transformer referred

to the center as follows
p = A1ef(mDeé 4 Aaeit=96 | 40itn5e 4 . ..
+ A, it (24)

The step reflections are assumed to be symmetrical; i.e.,
Ai=A,, As=A4,_4, etc. Therefore, for # odd

p=24;c08 (n—1)¢+245c08 (n—3)¢d + - + + Ay (25)
and for # even
o =24,co8(n — )¢p + 242cos (n — 3)¢p + - - -
~+ 24,2 cos ¢. (26)

In order to obtain optimum performance, the coef-
ficients 4,, must be chosen so that p will be proportional
to a Tchebycheff polynomial. These polynomials are de-
fined in (3) and (4) of this paper. A study of their
properties shows that they all oscillate between +1 for
x between +1. For |x|>1, | T\(x)| increases mono-
tonically.

To obtain the desired reflection-coefficient response
proceed as follows. First substitute the following trigon-
ometric identities in (25) and (26).

cos ¢ = w

cos 2¢ = 2w* — 1

cos 3¢ = 4w® — 3w

cos 4¢ = 8wt — 8uw? 4+ 1

etc.” -

27)

{

{‘ﬂ v I

Then set

el (AN
W = COS ¢ = X COS ¢py. ‘ il (282
Note that this last relation makes x <1 for ¢ between ¢,
and ¢, where ¢, = 180 degrees —¢;. [t is this symmetrical
range of ¢ in which the reflection coefficient is desired
to remain low. The angle ¢; may be chosen to be any
value between zero and 90 degrees. For example, if
¢1 =060 degrees, then ¢, =120 degrees, and ¢s/p1=2.
After (27) and (28) are substituted in (25) or (26),
a polynomial of either odd or even powers of x is ob-
tained. For a transformer having n steps, the highest
power is #—1. The resulting polynomial may then be

L
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set equal to al(,-1y(x) in order to determine the co-
efficients 4.,,. @ is a constant of proportionality that will
be evaluated later.

The following ratios are determined by the above
procedure:

Al:Az:Agi v :An = A1:QaiA3: * * ¢ Op, (29)

where ¢,=4,/4,. The various characteristic imped-
ances of the transformer may be readily computed from
these reflection-coefficient ratios by means of (14) of
this report.

Once the characteristic impedances have been prop-
erly assigned, the reflection coefficient of the transformer
is given by

p = al u_1n(x). (30)
But x is related to ¢ by
cos
x = ¢ 31)
COSs ¢
and, therefore,
CcoS ¢
p=al w1 ) . (32)
COS ¢

Subject to the assumption of small steps, p is <1, and
therefore the voltage-standing-wave ratio is

cos ¢
S=1+ 2aT<n_n< )

COS ¢1

(33)

The constant o may be determined from a knowledge
of p for ¢ =0. In this case, the reflection coeflicient is ap-
proximately equal to the sum of the individual step re-
flections, and therefore is given by

1 Zn1
o= —1In . 34
p g0 5 7. (34)
When this is substituted in equation (32) one obtains
1 ZIL+1
—?— In 7
o 2

o= = - (35)

cos ¢ 1

GO e ()
COS ¢y $=0 COS ¢

and, hence, the formulas for p and S are

Ccos ¢

+ 1 VA \ T <Eos ¢ )

441 1
= —1In 36
p = (%) 1 (36)

Ty
COS ¢
cos ¢
Zoy O ( 0s ¢ )
n C

S = 1—!—]n<Z+1\ <. (37

It should be noted that the use of equation (34) for ¢ =0

. Fob
td '
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in (36) and (37) leads to more accurate results in and
near the operating band of the transformer than would
the exact formula for p I G0

AprpENDIX 1

The following simplified method of calculating the a,.
values was developed for antenna-array applications by
Ross E. Graves in an as yet unpublished report. It is
adapted here with his permission for the stepped-
transformer case.

TABLE 1V
COMPUTATION OF RELATIVE ¢, VALUES FOR p=1.40

n=1 2 ,

=2 3.864

n=3 | 27.861 14.930

n=4 161.48 57.690
etc.

To employ Graves’ method, it is necessary to con-
struct a numerical table by a simple recursion procedure.
To illustrate the method, a typical table is given above
in Table IV for the case of p =1.40, ¢; =75.0 degrees. In
the upper left-hand corner always insert the number two
for any value of p. In the second column, second row,
always insert

Matthews: The Use of Scattering Matrices in Microwave Circuiis 2]
1
Xy = ——
COS ¢y

For this example, xg=1/cos 75 degrees=3.864. Then
fill in the table by means of the following rules until the
desired value of # is reached.

1. To find an additional entry in the first column,
multiply the element on the right just above by 2x, and
then subtract the element in the second row above the
entry to be found.

2. To find an additional entry in any other column,
add the two elements on the left and right just above
and multiply by xo, and then subtract the element in the
second row above the entry to be found.

3. Where an element is absent, assume it to be zero.

The illustrative table has been filled up to # =4. The
elements in the table are in the ratio of the a,, constants,
the first column corresponding to the center of the trans-
former. For example, for n=3,

aiiasias = 14.930:27.861:14,930 = 1:1.8661:1
and for n =4,
a1 @2iazias = 57.690:161.48:161.48:57.690
= 1:2.799:2.799:1.

The table could be carried, if desired, to any value of
n, no matter how large.

The Use of Scattering Matrices in Microwave Circuits
E. W. MATTHEWS, JR.}

Summary—Difficulties arising from the use of the impedance
concept in microwave circuitry have led to the introduction of the
scattering representation for work at these frequencies. This paper
presents a development of the scattering approach in terms of funda-

mental transmission-line phenomena. The physical meaning of the"

quantities involved is brought out wherever possible and the relation-
ships among the various elements of the scattering matrix are given.
Several examples of the application of scattering techniques to
analysis of the properties of microwave junctions are presented,
and methods for measuring scattering parameters of such junctions
are outlined.

INTRODUCTION
EN CONVENTIONAL circuit theory, the funda-

mental quantities of interest are voltages and cur-
rents, and the parameters used to express relation-
ships between them are called impedances or admit-
tances. A single two-terminal circuit element may be
characterized by a complex impedance, representing the
ratio between the voltage and the current at its two

T Sperry Gyroscope Company, Great Neck, N. Y.

terminals. The real part of this impedance (resistance)
is related to the power dissipated in the circuit element,
while the imaginary part (reactance) is a measure of the
average energy stored in the element.

More complicated multi-terminal networks may be
represented at a given frequency by an “equivalent
circuit” consisting of a number of simple two-terminal
elements in certain combinations or configurations, such
as equivalent tee, pi, or ladder networks. The properties
of such networks may alternatively be described in
terms of generalized impedance (or admittance) rela-
tionships between terminals (or “ports,” as currently
named). This description is better understood generally
in terms of the “self” and “mutual” impedances com-
monly used in coupled-circuit analysis as well as the
“transfer” impedances appearing in vacuum-tube cir-
cuitry.

At microwave frequencies, certain difficulties are en-
countered in the application of conventional low-
frequency circuit analysis techniques. As circuit dimen-



