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Optimum Design of Stepped Transmission-Line

Transformers*
SEYMOUR B. COIIN~

April

Summary—This paper describes the optimum stepped-transmis-

sion-line transformer structure for matching two unequal character-
istic impedances. For any specified bandwidth, the steps are designed
to yield a Tchebycheff-type (or equal-ripple) reflection-coefficient
response. Over thk band,, the maximum vswr is less than that obtain-

able with any other stepped-transformer having the same number of
steps. Design method and technique for eliminating discontinuity-

capacitance effects are given. The measured results for a coaxial
and a wavegnide model are presented and found to verify the method.

INTRODUCTION

I

N TH 1S PAPER a method of design will be given

for a transformer structure that is capable of match-

ing transmission lines of different characteristic im-

pedances over a very broad band. 1 As shown in Fig. 1
,
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+

Fig. l—The stepped transformer.

this structure consists of a succession of abrupt steps in

characteristic impedance spaced by essentially equal

electrical lengths of uniform line. The transmission line

may be of any type, for example, coaxial or waveguide.

With a specified number of steps, this design method

provides the maximum possible bandwidth for a given

vswr, or conversely, the minimum possible vswr for a

given bandwidth. For this reason, the structure has been

termed the @;mwz-stepped transformer. It may also

be called the Tchebycheff transformer, since the Tche-

bycheff polynomial is used in its design.

Prior to this work, Hansen’s bz%omial-coeflcient de-

sign was the accepted method for the stepped trans-

former. 2 In this design, the logarithms of the impedance

* This work was performed in 1951 at the Sperry Gyroscope Co.,
New York, N. Y., and is described in part in the Third and Fourth
Quarterly Reports on Development of Broadband Waveguide Com-
ponents, April 20, and July 20, 1951. The program was supported by
the Signal Corps under Contract No. DA-36-039-sc-166.

t Stanford Res. Inst., Stanford, Calif.
1 The writer has learned recently of independent work on opti-

mum-stepped transformers by: F, Bolinde:, “Fourier transforms in
the theory of inhomogeneous transmission hnes,” A eta Polytech. Elec.
Engrg. Ser. (Stock?zolw), vol. 3, pp. 3-84, 88; 1951. H. J. Riblet,
“Optimum (Narrow Band) Transformer and Directional Coupler
Performance, ” presented at URSI Meeting, Washington, D. C.;
April 28, 1953. S. Hopfer, “Techniques Utilizing Flat and Ridged
Waveguides,” presented at Symposium on Modern Advances in
Microwave Techniques, New York, N. Y.; November 10, 1954. It is
likely that others may also have made this extension of Dolph-
Tchebycheff antenna-array theory to transmission-line transformers.
R. E. Collin “Theory and Design of wide-band multi-section quarter-
wave transformers” PROC. IRE, vol. 43, pp. 179–185 ;TFebruary, 1955.

z W. W. Hansen, “Notes on Lectures, ” ch. 6: M. J. T. Rad. Lab.,
1941-1944.

ratios of the steps are made to be in the ratio of the bi-

nomial-coefficients; i.e., in the ratio of numerical coeffi-

cients of (X+y)’-l, where n is the number of steps.

Subject to Hansen’s assumptions of small steps, zero dis-

continuity capacitance, and equal electrical lengths be-

tween steps, theoretical vswr of binomial transformer is

z.+,
S= 1+ (cosd)’-lln~, ‘ (1)

L~

where @ is the electrical phase length between steps, n

is the number of steps, Z.+l is the characteristic im-

pedance of the higher-impedance terminating line, and

2] is that of the lower-impedance terminating line.

The improved method of design to be described in

this paper proportions the logarithms of the step ratio

in such a manner that the vswr has the characteristic

“equal-ripple” response of a Tchebycheff polynomial.

Subject to the same approximations assumed for the

binomial-coefficient design, and for a specified number

of steps, it can be shown analytically that the Tche-

bycheff design gives the maximum possible bandwidth

for a given vswr, or the minimum possible vswr for a

given bandwidth. The degree of improvement is evident

in Fig. 2, where the theoretical vswr is plotted as a func-
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Fig. 2—Theoretical vswr response of a five-step transformer for a
total characteristic impedance change of 8:1.

tion of the step spacing for five-step transformers having

the binomial and the optimum responses. In this exam-

ple, the optimum transformer was designed for a two-to-

one band, and has a maximum vswr of 1.021 in this

range. The binomial design has a vswr of 1.13 at the

edges of this range, and its bandwidth for a vswr of

1.021 is only 1.52 to one. The same sort of improvement

will occur for any number of steps and for any bandw-

idth however small or large, as long as the optimum

transformer is designed for that particular bandwidth.
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DESIGN RELATIONS

The design method given in this paper is similar to

one developed by Dolph3 for antenna arrays. When

appliecl to the stepped-transformer, the voltage-stand-

ing-wave ratio is

[1

Cos f#)
T,,., —

Zn+l

[1

Cos +1
S=l+ln —

ZI ‘ 1’

[1
Tn.l —

Cos $51

(2)

where @l is the electrical spacing of the steps at the low-

frequency edge of the band and Tn(x) is the Tchebycheff

polynomial of mth degree defined by

T,(x) = 1

T1(~) = ~

T,(x) = 2X2 – 1

T3(x) = 4.x3 – 3$

,:17 ;2 ‘i
(3)

,.= ~x’’_r, ”j
.,. . . . . . . . .

. . . . . . . . . . . .

T*,(x) may also be compu ted from the following equiva-

lent

The

expressions

l-m(z) = Cos (m Cos–1 x), ]xl~l (4a)

Ix]>lT~(Y) = cosh (m cosh–l x), _ . (4b)

maximum vswr in the design band is

.smsx=1+

Zn+l

[1in —z~

—

1“

[1
T.-l —

Cos Cjl

(5)

Eqs. (2) and (5), which are derived in Appendix 1, are

valid subject to the assumption of small steps in im-

pedance, but as will be shown later by an example, they

hold quite well even for surprisingly large steps.

In terms of the electrical lengths @l and ~z = 180 de-

grees –(bl at the band edges, the bandwidth ratio P is

given in coaxial line by

and in waveguide by

(7)

For a desired value of p, @l may be obtained from

180 degrees
@l =

I+f “
(8)

8 C. L. Dolph, “A current distribution for broadside arrays which
optimizes the relationship between beam width and side-lobe level, ”
PROC. IRE, vol. 34, pp. 335-348; June, 1946,

In coaxial line, the step-spacing is a quarter wavelength

at the center frequency of the band, or

In waveguide

(9)

(lo)

In order to obtain the vswr given by (;!), the ratios of

the reflection coefficients of the steps must be equal to

the ratios of a certain set of constants am which may be

computed for the particular number of steps and the de-

sired bandwidth:

Y1:7’2:Y3: . . . :rrL = a1:a2:a3: . . . :an. (11)

In order to simplify the computation and make possi-

ble an explicit formula for the characteristic impedances,

the following approximation proposed by Hansen will

be used

1 Zm+l 1
Y.&= —ln — Vm <—..

2zm’
(12)

3

This agrees within a few per cent with the exact formula.

for r even for Z~+l/Z~ as large as 2.0. It should not be

assumed, however, that the inaccuracy of (12) is the

sole theoretical factor limiting the design method to

small steps. Other factors are the reflecti(m interactions

between large steps and the diminution of the trans-

mitted wave at large steps. With the use of (12), the

step ratios may be given by

&.::. Zn+l
..:ln — = al:az:az: . . . :a~. (13)

ZI “ Z2 z.

The ratio at a given step may be computed in terms of

the terminating impedances and the am values by

.Zt+l

Zm+l
a.in—.

ZI
In—= —.

z.
‘(14)

a1+a2+a3+, .. +-an

Once Z~~l/Z~ is known at each step, the characteristic

impedance of each section of the transfc,rmer may be

obtained.

A simple method for calculating the an values neces-

sary in (14) is given in Appendix II. Alscl, as a fur[ her

aid to the design engineer, values of an are tabulated

(Tables 1, 11 and III, page 18) for bandwidth ratios of

1.40, 2.00, and 2.27, and for various numbers of steps.

The assumption of small steps would appear to limit

the utility of both the Tchebycheff and binomial design

methods in the case of a large impedance change, In

order to determine the effect of a large violation of the

small-step assumption, the hypothetical case of a 5-step

transformer having P = 2 and z6/ZI = 8 was investigated.

As shown in Fig. 2, the vswr for this case reaches the

maximum value of 1.021 at five points in the band. l.)ue
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TABLE I

‘?2 I an Values for ~ = 1.40

: :, 1
3 1, 1.8661, 1
4 1, 2.799, 2.799, 1

TABLE II

n an Values for @=2.00

1 1
2 1, 1
3 1, 1+, 1
4 1, 2+, 2*, 1
5, 1, 3, 4*, 3, 1

TABLE III

n & Values for p=2.27

5 1, 2.684, 3.585, 2.684, 1
7 1, 4.026, 8.078, 10.033, 8.078, 4.026, 1

to symmetry, however, only three of these points need

be considered. The various characteristic impedances

of the transformer were determined, and then the input

vswr of the terminated transformer was computed by

exact methods at the three critical values of ~. The

vswr’s thus obtained were 1.025, 1.014, and 1.027. These

values compare very well with the value of 1.021 deter-

mined from (5). Therefore, it appears that the small-

step assumption may be violated drastically without

excessive deterioration in the performance of the trans-

former.

CORRECTION FOR DISCONTINUITY SUSCEPTANCES

It has been assumed thus far that the discontinuity

susceptances in the stepped transformer are zero. This

would be approximately true in a low-frequency coaxial

line, but not in a high-frequency coaxial line or wave-

guide. The presence of the discontinuity susceptances

has two effects. The lesser effect is a small increase in

the magnitudes of the individual step reflections. The

greater effect is the introduction of phase angles in the

reflection and transmission coefficients of the steps. In

the following analysis these effects will be investigated,

and methods of correction for these effects will be given.

Fig. 3 shows the equivalent circuit of a single step in

an otherwise infinite transmission line. The voltage re-

flection and transmission coefficients of the step are:

Y.– Y.+l–jBm Y./vm+l– 1–’jB./Ym+l
ym = . (15)

Y.+ Ym+l+jBm Ym/Ym+l+ 1+jB./Ym+l

2 ym/~’m+I

tm=
YJYm+l+ 1+jB~/Y,n+l

(16)

lYm[= d(Y./Ym+l –1)2+ (l?m/Ym+ip
(17)

(Y,r,/Ym+, + 1)’ + (Bm/Yn,+J’

(2 Y*/Ym+l) 2
– . (18)

I ‘m [ = /(Y /Ym+l + 1)’ + (~m/yrn+J2.

It is seen that r~ is not greatly affected by l?~, if

(BJ Y~+J 2<<( YJ Y~+l – 1)’. This would be the case in

a low-frequency coaxial line, and would be approxi-

mately the case in waveguide. If this condition is not

met, the step impedances should be re-computed by suc-

cessive approximations until the r~ values for tn = 1 to

n are in the required ratio al :a2 :a~: . 0 . :a.. The effect

of 11~ on t~ is even less, and is likely to be negligible in

any case. The phase angles of r~ and tm are

( B./ Ym+l
L r. = – tan–l

Ym/Ym+l – 1)

(

Bv,/ Y~+,
— tan–l

Y./Ym+l + 1)
(19)

(

Bm/Y~+l
L f~ = — tan–l

)Ym/Ym+, + 1 “
(20)

By interchanging Y~ and Yn,+l it may be seen that L tm

is independent of the direction of transmission.

‘u’””
Fig. 3—Equivalent circuit of a single step.

NOW consider the individual waves reflected from the

steps arriving at some particular reference point be-

tween the generator and the transformer. It will be

found that the phase angles of the reflection and trans-

mission coefficients cause phase shifts in these returning

waves in addition to tho~e due to the distance traversed.

These extra phase shifts are

6.1= –L?’,

Ip,, = –LY2–2Lt,
(21)

. . . . . . . . . . . . . . . . . . .

4,. = –.L7’,, –2’ztl-2Lt2 . . . –2Ltn_l.

At the center of the band (q5= 90 degrees) these extra

phase shifts may be eliminated by moving each step

toward the generator by an electrical length equal to

one-half of the extra phase shift. The distance x by which

e’ach step is moved is therefore as follows:

The magnitudes of r~ and t.are
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4.2
q-

2/3 (22)

. ..O

where ~ = 360 degrees/A~ in wave guide and 360 de-

grees/X in coaxial (or other TEM-mode) line. Although

this correction is made only at the center of the band,

it should give good results over a wide range in $. The

physical result of this correction is in most cases to de-

crease the spacings between steps to somewhat less than

A/4 (or A,/4).

Ample theoretical data to permit accurate computa-

tion of the above correction exists for the discontinuity

susceptance of steps in coaxial, parallel-plane, and wave-

guide lines.4s

i-’’’’’+-’’’”’+’”%
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Fig. 4—The stepped coaxial transformer and its measured vswr.

EXPERIMENTAL TESTS

Data is at present available on two optimum-step

transformers. The first is a four-step coaxial trans-

former with $ = 2.0, and a design range of 1,000 to 2,000

mc. As shown in Fig. 4, one end of the transformer con-

nects to standard 7/8-inch line having a characteristic

impedance of 46.3 ohms, while the other connects to a

line having ‘the same O. D., but a characteristic imped-

ance of 112.2 ohms. The lengths were calculated from

(9) and the characteristic impedances from (14) with

the use of the a,,, values of Table II for n =4. The dis-

continuity susceptance corrections were computed by

(1 !2) to (22) and were found to require a shortening of

each length by about 0.5 per cent, a quantity small

enough to be neglected in this case. The maximum vswr

computed from (5) is 1.034, while the measured vswr in

4J. R. Whinnery, H. W. Jamieson, and T. E. Robbins, “Coaxial
~::4discontinuities, ” PROC. IRE, vol. 32, pp. 697–709; November,

.
5 AT. klarcuvitz, “The Wavegl[ide Handbook, ” McGraw-Hill

Book Co., Inc., New York, N. Y.; 1951.

the band has a maximum of 1.045. The difference be-

tween these values is very small and may be due to test-

equipment errors. For the same number of steps, (1)

shows that a binomial-coefficient desig n would have a

maximum vswr of 1.11 in the band.

The second transformer was constructed in 2 X l-inch

waveguide for use with a waveguide filter. In this ,appli-

cation, it was necessary to transform frc~m the standard

height of 0.872 inches to a height of 0.550 inches, with

the width dimension held constant. The required fre-

quency range is 4,400 to 5,200 mc, yielding a value of

P ‘~d~02 = 1.sS, but to provide some tolerance the

value P = 1.40 was used in the design. It was fouud by

(5) that a theoretical vswr of 1.016 could be held over

the band for n = 3 and therefore this number of steps

was selected. In designing the impedance levels i n the

transformer, use was made of the fact that for a constant

width, the characteristic impedance of a waveguide is

proportional to its height. Upon calculating th(: dis-

continuity -susceptance effect, it was found that the

change in the magnitude of the reflection coefficients

was negligible, but that a substantial change in cme of

the section lengths was required. The final dimensions

are shown in Fig. .5. The measured vswr, also shown in

Fig. 5, has a maximum value of 1.045 in the band. Since

the theoretical vswr is actually less than the nominal

accuracy of the test equipment, part of the addi~ional

reflection may be due to experimental error. Irn any

case, the performance obtained with this and the coaxial

transformer is considered to be a satisfactory verification

of the design method.
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Fig. 5—The stepped waveguide transformer and its measured vswr.

CONCLUSION

It has been shown theoretically and experimentally

that the optimum-stepped transformer is superior to the

previously used binomial transformer. Since the former

is no more difficult to design or construct, it is recom-

mended that it be used in all future ~lpf3hCELtbIl S re-

quiring a stepped transformer.

The discontinuity-susceptance correction, which

could also be used in the binomial transformer, makes
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possible the successful design of stepped transformers

in waveguide, where discontinuity effects have been

generally troublesome in the past.

APPENDIX I

DERIVATION OF THE DESIGN FORMULAS

With reference to Fig. 1, the voltage reflection coef-

ficient of the mth step is

Zm+l – z.
Am =

Zm+l +2.
(23)

Because of the assumption that the steps are small, we

may neglect reflection interactions, and express the total

reflection coefficient of the stepped transformer referred

to the center as follows

p = A1e~(~–1)4 + A2ei(~–3)+ + A3ef(~–5)@ + . . .

+ Ane–i(.–l)+. (24)

The step reflections are assumed to be symmetrical; i.e.,

Al =A., A, =A._l, etc. Therefore, for n odd

P=2AI COS(?z– 1)41+2Az cOS (?2–3)4 0-. +A(.+1)/Z (25)

and for n even

o=2Alcos (?Z-l)l#l+2A2cos (?3-3)4+.-.

+ 2An,2 COS @ (26)

In order to obtain optimum performance, the coef-

ficients Am must be chosen so that p will be proportional

to a Tchebycheff polynomial. These polynomials are de-

fined in (3) and (4) of this paper. A study of their

properties shows that they all oscillate between ~ 1 for

x between ~ 1. For I x I >1, I T~(x) I increases mono-

tonically.

To obtain the desired reflection-coefficient response

proceed as follows. First substitute the following trigon-

ometric identities in (25) and (26).

Cosfj=w

Cos 24 = 2W2 — 1

Cos 34 = 4W3 — 3W

COS @ = 8W4 — 8W2 + 1
.,

‘:etc .’; “
.-, .!’ !,! ,:

Then set , ;

(27)

W=coscj=xcosf$l.
,. .

Note that this last relation makes x ~ 1 for@ between @l

and @2, where ~z = 180 degrees —@l. It is this symmetrical

range of + in which the reflection coefficient is desired

to remain low. The angle & may be chosen to be any

value between zero and 90 degrees. For example, if

CPI= 60 degrees, then 42= 120 degrees, and +2/41=2.

After (27) and (28) are substituted in (25) or (26),

a polynomial of either odd or even powers of x is ob-

tained. For a transformer having n steps, the highest

power is n – 1. The resulting polynomial may then be
. . Y;i: :.,,’;: .: .1 .. ,

1,., ,.., !.’. , ,, ,’.,

set equal to a T(n.-l) (x) in order to determine the co-

efficients Am. a is a constant of proportionality that will

be evaluated later.

The following ratios are determined by the above

procedure:

A1:Az:A~: . . . :A~ = al:az:as: . . . G, (29)

where am= A JAI. The various characteristic imped-

ances of the transformer may be readily computed from

these reflection-coefficient ra’ties by means of (14) of

this report.

Once the characteristic impedances have been prop-

erly assigned, the reflection coefficient of the transformer

is given by

p = aT(n–l)(x). (30)

But x is related to@ by

Cos +
*= (31)

Cos $51

and, therefore,

()Cos ~
p = aT(n_I) — .

Cos +1
(32)

Subject to the assumption of small steps, p is <<1, and

therefore the voltage-standing-wave ratio is

()Cos +
s = 1 + 2aT(n_l) —

Cos +1 “
(33)

The constant a may be determined from a knowledge

of p for d = O. In this case, the reflection coefficient is ap-

proximately equal to the sum of the individual step re-

flections, and therefore is given by

(34)

When this is substituted in equation (32) one obtains

a=(T(n-1)&&)):0‘3’)
and, hence, the formulas for p and S are

1
p=—in

2

T(n-lJ
Zn+l

()
——

z,
T(n_l)

()Cos @
——

Cos +1

()1Cos r+l

(36)

()Cos 1+
T(n–l) —

()

z.+,
~=l+ln —

Cos +1

ZI

()

1“
(37)

T(m–l) —
Cos q!ll

It should be noted that the use of equation (34) for q5= O
., ,!,,~;. . ,

.)) !,,. ,’-.. I
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in (36) and (37) leads to more accurate results in and

near the operating band of the transformer than would

the exact formula for p I ~=O.

.~PPENDIX II

The following simplified method of calculating the am

values was developed for antenna-array applications by

Ross E. Graves in an as yet unpublished report. It is

adapted here with his permission for the stepped-

transforrner case.

TABLE IV

COMPUTATION OF RELATIVE a,,, VALUES FOR p = 1.40
—

n=l 2
~=z 3.’864
)1= 3 27.861 14.930
)2=+ 161.48 .57.690
etc.

To employ Graves’ method, it is necessary to con-

struct,3 numerical table by a simple recursion procedure.

To illustrate the method, a typical table is given above

in Table IV for the case of P = 1.40, @l= 75.0 degrees. In

the upper left-hand corner always insert the number two

for any- value of p. In the second column, second row,

always insert

.
1

X()= —-.
Cos +1

For this example, *O= l/cos 75 degrees= 3.864. ‘Then

fill in the table by means of the following rules until the

desired value of n is reached.

1. To find an additional entry in the first column,

multiply the element on the right just above by 2X0 and

then subtract the element in the second row above the

entry to be found.

2. To find an additional entry in any other col!umn,

add the two elements on the left and right just a hove

and multiply by xO, and then subtract the element in the

second row above the entry to be found,

3. Where an element is absent, assume it to be zero.

The illustrative table has been filled up to n =4. The

elements in the table are in the ratio of the am constants,

the first column corresponding to the center of the t rans-

former. For example, for n =3,

al:az:at = 14.930:27.861:14.930 = 1[: 1.8661:1

and for n =4,

al:az:a3:a4 = 57.690 :161.48:161.48:57.690

= 1:2.799:2.799:1.

The table could be carried, if desired, to any va] ue of

n, no matter how large.

The Use of Scattering Matrices in Microwave Circuits

E. W. MATTHEWS, JR.~

Summarg-Difficulties arising from the use of the impedance

concept in microwave circuitry have led to the introduction of the
scattering representation for work at these frequencies. This paper
presents a development of the scattering approach in terms of funda-
mental transmission-line phenomena. The physical meaning of the
quantities involved is brought out wherever possible and the relation-
ships among the various elements of the scattering matrix are given.
Several examples of the application of scattering techniques to
analysis of the properties of microwave junctions are presented,
and met hods for measuring scattering parameters of such junctions

are outlined.

lNTRODUCrION

I

IS CONVENTIONAL circuit theory, the funda-

mental quantities of interest are voltages and cur-

rents, and the parameters used to express l-elation-

ships between them are called impedances or admit-

tances. A single two-terminal circuit element may be

characterized by a complex impedance, representing the

ratio between the voltage and the current at its two

~ Sperry Gyroscope Company, Great Neck, N. Y.

terminals. The real part of this impedance (resists rice)

is related to the power dissipated in the circuit element,

while the imaginary part (reactance) is a measure c}f the

average energy stored in the element.

More complicated multi-terminal networks may be

represented at a given frequency by am “equivalent

circuit” consisting of a number of simple two-terminal

elements in certain combinations or configurations, such

as equivalent tee, pi, or ladder networks. The properties

of such networks may alternatively be described in

terms of generalized impedance (or admittance) rela-

tionships between terminals (or “ports,” as currently

named). This description is better understood generally

in terms of the “self” and “mutual” impedances com-

monl~’ used in coupled-circuit analysis as well as the

“transfer” “Impedances appearing in vacuum-tube cir-

cuitry.

At microwave frequencies, certain dif%culties are en-

countered in the application of conventional low-

frequency circuit analysis techniques. As circuit dimen-


